BUBBLE FORMATION AND GROWIH

Study of the Boundary Conditions at a Liquid-Vapor Interface

through Irreversible Thermodynamics
by
Walter J. Bornhorst

and
George N. Hatsopoulos

Quarterly Progress Report

(THRU)

LA

7 (CATEGORY)

March - May, 1966

for

National Aeronautics and Space Administration
George C. Marshall Space Flight Center
Huntsville, Alabama
Attn: PR-EC
CFSTI PRICE(S) $ Contract No. NAS 8-20013
j‘ ¢+ Control No. 1-5-52-01122-01 (1F)

20

GPO PRICE $

Hard copy (HC)

Microfiche (MF)

June 1966
ff 653 July 85
Department of Mechanical Engineering
Massachusetts Institute of Technology
L
ey T — et -l T ERe T T T e




TUBBLE GROWIH CALCULATION Y'ZITHOUT‘ NEGLECT OF INTERFACIAL DISCOKTII‘EUITIFS]'

W. J. Bornhorst

Assistant Professor of Mechanical Engineering
Vassachusetts Institute of Tecimology, Cavbridge, Mass.

G. N. Hatsopoulos

‘Senior Lecturer of Mechanicel Engineering

¥assachusetts Institube of Technology, Cembridge, Mass.
ABSTRACT

The object of this theoretical investigation is to determine the
importznce of the ncnequilibrium region, which exiéts at the bubble wall,
on the growth of & vapor bubble. All previous investigators concerned
with bubble growth have completely neglected this nonequilibrium effect.
Irn the previous paper Bornhorst and Hatsopoulos investigated the phase
change problem, and the results which were cbtained are applied kere to
solve the special problem of vapor bubble growth.

The results are presented in terms of a itwo-parameter set of curves.
These results show that for pressures where experimental results are

r2il2ble, the nonequilibrium effects are within experimental error; how-
ever, for pressures which are somewhat lower, the nonequilibrium effects
ecoxe very important.
1. INTROTUCTION

When a vapor bubble grows, materizl passes from one phase to another

at o net finite rate near the bubble wall. A very thin but finite non-

equilibrium region must exist at the interface %o allow for this phase

‘Tha.s work was sponscored by IIASA contract NAS8-20013.
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trensition. In this nonequilibrium regicn %.hermod:mamic properties,
such as temperature and chemical potential, lose their meaning, as
&lso does the Fourier hsat conduction law aleong with other combimmum
equations. Ve sho;.tld not expect a finite rate of energy or mass to
pa5s through this norecuilibrium regica without a corresponding drop
in temperature and chemical pobtentigl. Su’osequently, we shall speak
L th anges 28 discontinuities, realizing, howéver, that they
really result from a gap in the temperature aznd chemical potential
profiles.

In crder to comnect the bulk conservation equations across the
noneguilibrium region, it is necessary to have a set of egquations which
relate the interfacial discontinuities to the flux of mass and ernergy
across the interface. This ée‘& of equations, which will be used here,
was described in the previcus paper by Bornhorst and Hatsopoulos [1] .

In 211 previous bubdble growth analyses, the effects of this non-
equilibrium region at the bubble wall have been conmplete].y neglected.
In other words, it has zalways been assumed that the temperature and
chemical potential are egual in the liquid and vapor phases at the
interiace.
and temperature at the interface are related by saturation conditioms.

Subseguently, we shall refer to this assurption as the equilibrium -~

0]

ascurpbion.

growth rates without making this assumption. The resulis thus ovtained

show thaet the equilibrium assumption causes large errors for bubble

growth rates at low pressures.

This assumptiocn is equivalent to assuming that the pressure

The purvose of this peper is to dbizain eguations for bubhle
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The first solution for the problem of bubble growth was reported

by Z=zyleigh. [2] In his enalysis he considered only dynemie effects

and completely neglected the cooling effect of eveporation. His con-~

clusion was that bubbles grow et a constant velocity. ILater Plesset

and Zwick(3] end others [1&, 5] obtained asymptotic solutions (valid
_ ' for sufficiently large values of the radius R) which completely neglected
Te but included +the cooling effect of evaporation.
Their conclusion was that the cooling effect is very important and that
the bubble wall veloeity is proportionai to the inverse square root of
time. This conclusion is in agreement with experimental bubble growth
reasurements made by Dergare.bedian.fSJ These measurements do not Justify
the eguilibrium asswiption for the generzal case_of bubble growth btecause
the experimental conditions of Dergarabediants experiments were such that

the noneguilibrium effects were unimportant for his specific tests.

2. TERIVATICN OF BUBEBLE GROWIH EQUATION

The goal of the present analysis is to reduce the appropriate con-
servetion equations to a single differentizl eguation for the bubble
wall velceity é. This sclution should be at lzast approximately valid
Tor both early and late budbdle growth.
2.1 Rayleigh Equation

The momentum equztion for a spherically symmetric flow of an inccm-

pressible Newtonian fluid with no body forces is

2u du_ _ ¥ & A 2
TR E R T )

vrere u dernctes the redial liquid velocity. With these assumptions the

continuity equation gives
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e (6) | (2)

where i‘l(t) represents an arbitrary function of time which can be evalu-
a2ted at the bubble w21l by comsidering an overall mess balance for the

Wutble. From this mess balance we find that

Mg
o

s (3)

u =R
T

vhere we have assumed that

L/ fre<1, ()

and slso that

(/378 £) =27 L KR - (5)

Bl

Assuzption (&) is ceriainly very good especizlly at low pressures,
and the second assumption can be physically justified since the bubbdle
radius changes orders of magnitude while the vapor density variations
ore relatively small.[3j The expression for u given by (3) can be sub-
stituted into (7), and since the viscous term is identically equal to
zero, the resulting equation can be integrated from the bubble wall out
+0 infinity. If we also include the pressure drop across the interface

due to surface tensicn, we obtain the familiar Rayleigh eguation

P - P 2 0— 3 : .
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& =RGS+R—:Q—§+3/ER2. (6)
e Pz e
- g e e
— COPY | ! COPY o .
T EeRS e T XERS Ty T

T
St tare




2.2 ZEnergy Equation

The energy equaticn zpprepriate for the licguid phase is

LJ

e PG o

DY
{3
H ltd
[Ao1 I AV

=« IEY
QJIQ/
Hi3
H 3

where we mzde use of eguation (3) to express the convection velccity
u in terms of R The boandary condition at the bubble wall is obtained
by a2pplying the first law to a control volume comsisting of the vepor
bubble
(5D = fite® s (8
whers we have dropped small terms due to corpressibility effects and
temperature changes in the vapor. Pbysically Equation (8) states thet
the terperabture slope in the liguid must be such to supply the required
energy to evaporate the liguid.
To solve Equation (7) in conjunction with (8), we employ an approxi-
"i.te integral technigue developed by Murdock.[ T] This method consists
of ascsuming a second-order temperature distribution in the liquid thermal
voandary layer. The boundary layer thickmess 1s determined by requiring
the integrated distribution to satisfy the energy equation. The details
of this anz2lysis along with & discussicn concerning the validity of the
integrzal epproxim=tion is given in Appendix A. The result which is shown

to be valid for low pressures is

2.2
. Zkb R 2
R= == (T - Tpy) (9)
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vhere T i is the temperature of the 'liquid a2t the budble wall and kb is

a Tunetion of fiumid properties defined by

i (10)
Y o e— . 10
o $g Beg oo

2.3 Irreversible-Flow Equaticms

In order to combize Equations (6) and ‘(9) , we need 2 relation between
iy et and ?g. If we were tq admit thermodynaric equilibrium at the bubble
wall, such a relation would be given by the Clapeyron equatiop; however,
here we shall avolid the equilibrium assumption by employing Egquations.
(20) end (21) from the previcus paper by Bornhorst and Hatsopoulos.[1]

These equations may be writlen as

X5 't

Peg T
To=9 gy ~h 20 (1)
and
S S 1 S o )
3 wE D 9T TV OF (12)

where J_ and J 5 denote the energy and mass flux, respectively, K Lk’
2

and I"ii represent transport ccefficients, snd the defining eguations for

'd

¢ T and d’i.P are
‘m=rm /
=T - T.. 1
oL gi 3 ( 3)
and
= - P )
dfP Pf fs (1k)
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vhere P, is the actual pressure of the liquid at the interface, and P,

is the saturation pressure at T 1 2nd ‘the radius R.

Revriting Equation (12) in a more convendent form and substituting

for J, in terms of R (see Zouation (5)), we cbtain

- Ly P Ve -x Prg ST @
R = ——
Se

- Lo e
n+1]?vf T P

. (15)
g

|

If we assume that the kinetbic theory expressions give the correct

rGer of magnitude for X/(X + 1) and Lk’ we can shovw that the first temm

in the brackets is small cowpared to the second. This is sccomplished

in Appendix B by taking into sccount the energy supplied to the vapor.
nis simplification Equation (15) becomes

. 2 U P

L
R - P

» 15
(2 - T7) fg(elriw)l/z 3 (29)

waere Li* was replaced by snother transport cozfficient Vc defined by

the relation

~ o~ = 1/2
2 (e ~ (27 7D) Voo Pig
lor

_ . 17)
2 - Te i

+
394V)

The quantity O\c beeccmes identical to the condensation coefficie

if ¢

ne kinetic theory resulbs, given in section L4 of the previcus paper
by Bornhorst and Eatsopoulos, are assumed correct.
From the definition of &£ (Equation (1k)) and the Clapeyron rela-

tion, we can cbtain
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OC:Pz(P -P,) + fg _“ }-(‘l‘oo - T.,) - de] ’ (18)

where AT s is the supérheat of the liguid at infinity. It should be

roted that the use of the Clapeyron relation here implies nothing sbout
the actuzl equilibrium of the liquid-vepor system. Eauations (16) and

(18) can be combined to yield

. -2 f .
1 ‘g fg N .
R = < (1> (T = Tpy =~ AT ) . {29)
(2 -0g4) (2 ‘Tf;{T [ T £i 5] d

2.4 Firal Differential Equation for Bubble Growth

- The fipal differential equation is obtained froz (19) by substituting
£ P - vatior a -T.. rou ratior .
for ("g P oo‘) from Eguation (6) and for ('.I’DD Tfl) from Equation (9)

The result is

Surface Nonequilibrium Liquid JRRN
Tension Effect Inertia Ve
I | L
. akax T 24 T(2rF m.)/ . F
AL _ o s "o f(RR +_}/2_\2\72.
(m33y . Bp. B 24 f&
(R -R ) Jg fs n (_9____) 8 8
fg'2 - r7‘c

The physical intervretztion of Equation (20) is that the potential
driving temperature differcnce LT is diminicshed by surface ’cension,.
noneguilibrivm effects, and finslly by licuid inertia effects.

Equation (20) cen be numerically integrated; however, before proceed-
ing to this it is beneficial to nondimensionlize this equation. The

haracteristic length is chosen to be the mstaolb equilibrium radius Ro’

and the characteristic bubble wall velocity is taken to be the maxirm

velocity the bubble wall would attain if nomecuwilbrium effects and liquid
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inertia effects were identically zero. Ve shall call this bubble wall
velocity Ro' The defining ecuations for Ro’ Ro, end the corresponding
/N

A
dimensicnless guantities R and R are

2
R = 2Toc.rs ‘{ = 2k AT, (21)
= — — ,R_=
° Jgfrg 4% T ° R (3+2/3)
and
A o e »
R=R/R, ,RE= R/R, - (22)

Introducing these definitions in Equation (20), we obtain

o>

n o
M A °y 2 -
— X (®wm+32R) |7, (23)

. (3+2«I§)/§2 1
R = S l—x-ﬁ - =
R (3+2y3)

(& -2

shere /4 and M are functions of the fluid properties and the initial

conditions. The defining equations for £ and M are

_ e kb(afr'zir)l/e(e-- T,) AT

4 ——— , (2)
: O’s(3+2¢3)21c-
and
§e K A '
M= ..L S (2_\'
303 g2 42 2
g g * Vs

It is rezdily seen that ’/3 is a reesure of the nopnequilibrium effect

while M is 2 measure of the liquid inertia effect.
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Ecuation (23) was mumericelly integrated on a computer for varicus
values of the fluid parameters [) and M. The results are presented in
the next section.

3. DRESENTATION OF EUBBLE GROWTH RESULTS
3.1 Explenation of Graphs

Values for the fluid parameter: or variocus fluids are

(4]
©n
5
Qu
=
rh

plotted in Figs. 1 and 2 zgzinst the reduced temperature TR- The reduced
temperature TR is the ratio of the saburaticn temperature To to the
eritical temperabture T . The strong dependence of [3 and M on the satura-

-

sicn temperature and, therefore, also on the external pressure P, should
e noted. Tais means that The nonequilibrium effects vhich vaxry directl
with 4 and indirectly with M are also strongly Cependent on the tempera-
Ture To and external pressure P,. As is seen from Figs. 1 and 2 the non-
equilibrium and mementum effects incresse with decreasing pressure.

Tigs. 3 through 5 show plots of the dimensionless bubble wall veleocity
R versus the dimensioniess bubble radius R. Zzch figure is for a fixed
v2ine of M while [J is veried from zero to a reascnable velue correspond-
irg to the particular value of M.

The curve labeled " /£ ecual to zero' corrzspends to the solution cne

¢

wonid obtain if thermodynamic ‘equili'br:':am were assumed. Thus the non-
ecuilibrium effect is the difference between this curve and the curve
with /(9’ corresponding to the case of interest.

The curve labeled "asyrptotic solution ( 8 =0, 14=0)" corresponds
+o0 the solution obtained by several authors [3_. L, S] valid for late bubble
growth. It can be seen from Figs. 3 through 5 that the asymptotic solu-

tion beccmes velid only ab very large radii, especially for the lerge

values of M.
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Cn each figure a table is given which relates the particular values
of ;,6 and M to a specific operating condition for a specific liguid.
Since M is not a function of the condensation coefficient U; , We may
tag a velue of O to each value of {3 for a given operating condition.

The linear requirement which can be obteined from Equation (16),

end the definition for R and (3 is that

A
"fig- : fghfg ATS

The meximm value of f.P/P for the cases considered in Figs. 3, 4, and
S is listed on each Tigure. All the cases are seen to be spproximately
linear except for nitregen where (. fP/P mey be as large as 0.6. By reduc-
irg the superheat ATS and increasing the external pressure P,. , we can
get cases for nitrogen vwhich are linear and still exhibit irportant non-
equilibrium effects.
3.2 Significance of Resulis

The results cbiained clearly indicate the inr_aorta.gce of the nonequi-
Librium effects by the spread of the curves on Figs. 3 through 5. 1%
should be noted that the nonequilibrium and momentum effects decay faster
with bubble radius for the smeller values of /;’ and M. The effect of
both /@ end M is to greatly increase the extent of what has been called
the initial bubble growth, thet is, the growth up to the point vhere the
asymptotic solution becomes reasoziably accurate.

In order to illustrate the points mentioned sbove, we. shall con-
sider the example of a vepor bub'ble‘ groving in water at an external pres-

sure P 0 equal to 0.173 psi. The corresponding saturation temperature
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7 is found to be 510°R. For this value of To and a value of the con-
densation coefficient 7~ o equal o unity, we find from Fig. 1 a value
retely equal to 10-2. If we choose to take ATS equal to 10°F, we then
cbizin a value for ﬂ of 1.0 and a value for M of 103. Since Fig. &

corresponds to M equal to 103 s the curves on this figure represent the

]

i

cese gt hand. The different values of ;'5 correspond to various values

of the condensationcoefficient ¢ e For the exarple comsidered, Fig. 6
shows the real bubble velocity (ft/sec) versus the real bubble radius

(£5) for various values of G‘;: . For this case we conclude that the non-
equilibrium effects are very important for a large portion of the bubble's
gxrovwth.

3.3 Suggested Experiments

A1l existing experimentel date on bubble growth rates correspond
to such low velues of 3 and M that the nonequilibrium effets are unin-
portant in these experiments. In order to check the present theory,
ubble growth measurements are needed at low pressures with the corres-~
ponding high values of [ and M.

Since bubble growth rates have been fourd to be such a strong func-
tion of ,{5 » end therefore also of O’c ; it is suggested that O; be
measured from bubble growrth experiments performed at low pressures. One
covious advantagé of this type of experiment is the elimination of the
contemination préblems which seriously plagued most previous attempts

to mezsure G‘c, especially those for the ncn-metals such as water.
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ACPENDIX A

Enerzy Integral Technioue

Most of the concepts in this appendix were taken from a report by

Murdoek. [ 7]

The cbject is o solve

2.
2T R @ .1 2 , 20T _
St 25z f T e (4-1)

with the boundary condition at the bubble wall

, (a-2)

e

am o
k‘, (?—:' = h
£ '\er r=R+ )g g

where the notation is the same as used in the body of this rever.

The other boundary condition far from the bubble wall is
P (w’ t) = PCO 2

and the initial conditions are
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P(r, 0) =

1
g
3

gnd

T(r, 0) Tao hd (A‘3)

A thermsl boundary layer of thickness § is assumed to exist in the

1iguid outside the vapor bubble. The temperature profile assumed in the

)
|
4
)

-

LDOUILETY ayel is

2
-, mmy) [ EEmBL @B (a-)

where T 5 is the temperature of the liguid at the bubble wall. This is

sizply a second-order curve vwhich satisfies

™R, t) = Ty

MR+ , ) =Tp >

nd

gy o | (8-5)

Fere it is convenient for us to define 2 new variable
?."/1 = TO,, - T, . (24-6)

Corrining (A-1) and (A-lt) with (A4-6) and then integrating from R to R + [ ,

we cphiain
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This differential equation can be greatly simplified by assuming that

& &R, ' 4-8)
which is justified later in this appendix. With this simplification
Equation {A-T) becomes

2 dZ’ ¢ 1 0
(.‘2R 2 AY
L .24 + st = at . (A..9)

¥ J R 42

This equation can be integrated to yield

\[]2_ JQR)"=12 A | g‘ial‘ a (4-10)

and

We can express the terperature slope at the bubble wall in terms
of c}’ from the assumed temperature distribusion in the boundary layer.

2 ¥
(.?_'.1’.) -4 , (a-12)

I we combine this with the boundary condition given by Equation

(A-2), we find that

b R=2k; Zl/ d . (a-13)
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Replacing o in (4-13) frem (A-10), we get

. I
5 k. ZiR 1/2
22 = [ 2g dt] (A~11)

= (7 ya2 .k
Y E 1R &, (A-15)
o
and, therefore,
5 2.k
o.ul = J1 R dt .
ifter integrating and rearrsnging we obtain
«
g = (& - 3270\ i g Bre/%s 2‘1 . (A-16)
Combining this result with (A-13) we firnd the desired result to be
: 2.2 2
R=2K R Y-8, (A-1T)
whers the defining equation for k.o is
)4
o = < : pocd | (4-28)
g el

In order for this result to be meaningful, it wmust be true that

F/R & 1. " (a-19)

From (A-16) we can write
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and (A-19) can be repleced by the condition that

O fobeg

~ K 1.
e Y1

(A-20)

(A-21)

This condition is usually satisfied, especially at low pressures. For

instance, water at 50°F gives a value of approximately 10'3 .

Satisfying condition (A-21) does not completely justify the use of

the integral technique since we have only satisfied the energy equation

for the integrated distribution and not at each point in the boundary

lzyer. The integral techricue is believed to give a good approximaition

for the following two reasons:

1. In the limit of large R (asymptotic solution), this technique gives

results which are within 2% of the resulis obiained by Plesset and

Zwick[3] and Scriven [5] for the esyrptotic region of bubble growth.

2. If o linear temperature profile is used instead of the parabolic

one, the results change by only 12%. This indicates the shspe of

the temperature profile to be relatively unimportant.

APFENDIX B

Sirplification _o_f_ Mess Flux BEquation

-L..Pvy

The irreversible mass flux (Equation (15)) can be written as

. L) “ h
R = 51’1T = [“2’§ o gT +J;P ’ (3-2)
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where the notation is the saze &s in the body of this paper. The Tur-
Tose here is to show that the Tirst term in the brackets is very sm2ll
ccupared to the second.

This is accomplished bty noting that the slope of the vepor tempera~-
ture profile at the bubble wall starts out as negative and remains nega-
tive thrcughout bubble growth. The profile sterts out negative becaucse
the terperature at the dubble wall decreases much.faster due to latent
heat requirements than deoes the bulk temperature of the vapor due to
the work of the pressure forces. To show this, we calculate the order
of magnitude of the mean terperature decrezszs inside the bubble vwhen
the bubble volume doubles from its initial unstable equilibriun state.

For this change the work is

m, &P -
SWE=PSV & 7 SV =m R, (3-2)

o}

where o is the initizl mass of vapor in the bubble. The corresponding
change in the average temperzbture Tm of the vapor must be
mb RIm

ST, =—5 (B-3)
v

We form a ratio by dividing by ATS and use the perfect gas law to cbtalin

r
o Tm _ Poo VO . (8-}
4 TS cVA TS ) B

This ratio is extremely small. TFor exsmple, water at SOOF gives a value

of sbout 10712,
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The corresponding decreasse in the wall temperature can be showm to
e mach larger then T, In Avpendix A it was found that

. 2¥ R, .

Re—g—3 (1 ° . (B-5)

R3 —33
o

Tow we want to find the value for Z( 1 when +he bubble volume has doubled.

This is approximately given by

RR
.,.4' 2 - —_2 (B-S)

or using the definition of the dimensionless velocity, we find that

’1 1/71;\— (3-7)

| which for water at 50 is approximately 10-1,- therefore, it must be
true, during early bubble growth, that the slope of the temperature pro-
£ile in the vepor is negztive. As growth contirues the slope will tend
toverd zero because energy is conducted eway from the bubble, and 2t the

szme time the vapor flux coming into the bubble is at a temperature lower

thsn the bulk tempersture of the vepor in the dbubble. In surmary we con-
cluded that the slope of the temperature in the vapor at the bubble wall

st always be negative.

Using this fact we can show that the temperature discontinuity across
the interface is always smaller than a given guentity ST . Ve shall

then proceed 4o show that ¢ T___ is small.
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The energy flux into the bubble at the dubble wall can be expressed

cT
Jd. = .+ _—
A I

or, by using the irrveversible energy flux, as

-

s

T

Ju:K

r + 3 . -
’_th ng_( Iy = by .

+

1

Corbining (B-8) and (B-9) we get

P (20  oome’s g dT
g'arx XK+1 L ‘
=R .

H

(8-8)

(3-9)

(B-10)

Frcem (B-10) we see that J T will have its largest absolute +value when

ltg( 2T/? r)r=R has its largest algebraic value, which was showa cbove

+0 be zero. Thus it follows that

'éTme:.z:__( K )hi‘gT

T = X + 1 Iy -

L

T
Sa

Substituting in (B-11) for J, we find that

- . K ”:" l\ 2 Lk -l
g = 1+ ( K / P »
hep Iyg

where we have defined g as

- (K/& + 1) (0 /27,0 (6 _ /T)

i L ?/7)

(3-11)

(3-12)

(3-13)
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The cuantity f hzs been defined so that it is the ratio of the

terns vhich 24d in Equation (B-1). In other words we need to show §

Vo=

t0 be small. Anbticipating g ‘to be a small nurber, we éa.n simplify

(B-12) as _ -

{ ~ K2 h?g Lii ) (B-14)
T w+n?

Now if we substitute in (B-1k) the approximate kinetic theory value

for X/(X + 1), Ly, end I, end use the perfect gas law, we find thet

Ve (L-1)
gx a_rc’(z_.rl}[; 2 (B“l5)

or since

3 < 2% 77; i) . | (B-16)

- . . R e . N
The right-hand side of (B-lé) is spproxirately 10 © indicating that the
term we neglected is at least one order of zmagnitude smaller than the

other term in Equation (B-1).
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An operating condition for nifrogen which

corresponds approximately to M equal to 10%is

. 0 g . 1A0
T,=100°R, AT, =10°R,

and if o=l.0 then B=15 and 8P/P<0.6,
and if o, =.46 then B=5 and 8P/P<0.6.

Asymptotic Solution
(B=0; M=0)
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corresponds approximately to M equal to 108is
To= 900°R, ATy=10°R, .
and if o, = 1.0 then (3= 30 and 8P/P<.04,
and if 0,=.46 then 8 =100 and 8P/P<.06.
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Dimensionless Bubble Wall Velocigy Versus Dimenslonless
Bubble Radius with M Equal to 10
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